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GEb:ERATION OF MO._O--ISPERSE DROPLETS BY SPONT._ECUS

CONDENSATION OF FLOW IN NOZZLES

Abstract

Submicron size monodisperse particles are of interest in many

industrial and scientific applications. These include the

manufacture cf ceramic parts using fine ceramic particles, the

production of thin films by deposition of ionized clus_,>_:,

mcnodisperse seed parcic!es for laser anemcmetry, and the study

cf size dependence cf cluster chemical and physical properties.

_n inexpensive and relatively easy way to generate such particles

is by utilizing the phenomenon of spontaneous condensation. The

phenomenon occurs when the vapor or a mixture of a vapor: a)_d _

noncondensing gas is expanded at a high expansion rate. The

saturation line is crossed with the supercooled vapor behaving

like a gas, until all cf a sudden at so called the Wilson point,

condensation occurs, resulting in a large number of relatively

monodisperse droplets. The droplet size is a function of the

expansion ra_e, inlet cGnditions, mass fraction of vapor, gas

properties, etc.
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In this dissertation, spontaneous condensation of (a) steam and

(b) water vapor and air mixture in one dimensional nozzle has

been modeled and the resulting equations solved numerically. The

classical (Frenkel and Volmer) and Deich's nuclea_icn theories

were used. Unlike classical theory, Deich's theory also accounts

for the critical droplet size dependence upon the expansion rate

in the nozzle. The droplet size distribution at the exit of

various one dimensional nozzles and the flow characteristics such

as pressure ratio, mean droplet radius, vapor and droplet

temperatures, nucleation flux, supercooling, wetness etc., along

the axial distance were obtained. The numerical results compared

very we!! with the available experimental data. Bcth nucleation

theories predicted the pressure ratio prcperly but the classical

theory tended to overestimate the droplet sizes. Additionally,

since the classical theory cannot be used for

correlation for surface tension ratio, Deich's

preferred for analyzing and designing new nozzles.

obtaining a

theory is

The effect of inlet conditions, nozzle expansion rates and vapor

mass fractions on droplet mean radius, droplet size distribution

and pressure ratio were examined. By manipulating the various

parameters, different mean radius and pressure ratio can be

obtained. However, this only has minor impact on the relatively

monodisperse droplet size distribution.
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CHAPTER 1 INTRODUCTION

Submicron size monodisperse particles are of interest in many

industrial, as well as scientific applications. These include the

manufacture of ceramic parts using ceramic particles, the

production of thin metal, semiconductor and organic films by

deposition of ionized clusters, and the study of the size of

dependence of cluster chemical and physical properties [I.01].

Monodisperse seed particles are also of great importance in laser

anemometry. The ultimate accuracy of particle scattering based

laser velocimet_ l measurement depends upon the ability of the

light scattering seed particles to faithfully track the local

flow field. For achieving maximum measurement efficiency, the

control of seed particle size, size distribution, shape and a

specific material density is desired [1.02]. Edwards [1.03]

suggests that all possible bias problems in laser anemometry

would be easier to be dealt with if there existed an inexpensive

seeder that was capable of generating monodisperse seed particles

fast enough to provide acceptable levels of data density. The

size ranges of 0.i to 1 _urnare of great interest in seeding high

speed flows such as high subsonic, transonic, supersonic and

hypersonic flows.



The phenomenon of spontaneous condensation, also called

homogeneous condensation, can be utilized for generating

monodisperse particles. The phenomenon occurs when the vapor or

the mixture of vapor and gas is expanded at a high expansion rate

through a nozzle, such that the saturation line on the Mollier

chart is crossed with the supercooled vapor behaving like a gas

until all of a sudden at a certain point called the Wilson point,

condensation occurs, and the condensate separates out, resulting

in a large number of nearly monodisperse droplets. The droplet

size is a function of the expansion rate, nozzle geometry, inlet

total conditions, mass fraction of vapor in case of vapor gas

mixture, gas properties, etc.

The phenomenon of spontaneous condensation is also of much

interest in the problem of wetness loss in the low pressure as

well as high pressure stages [1.04], [1.05], [I.05] of steam

turbines. The latter case was stimulated by the advent of the

light-water-cooled reactors which supplies dry saturated steam at

inlet to the high pressure cylinder of the turbine. The same

phenomenon was found important in the supersonic and hypersonic

wind tunnels [1.07], [I.08], [1.09] and free-jet expansions

[i.i0] . Condensation is usually undesirable in these

applications, and therefore a be=ter understanding and prediction



of the phenomenonare crucial to the control or even elimination

of the condensation.

Experimental and theoretical studies of expansion of steam

through supersonic nozzles has been conducted by various

investigators [i.ii], [1.12], [1.13], [1.14], [1.15], [1.16].

Experiments conducted by Gyarmathyand Meyer [1.13] show a strong

relationship between the rate of expansion in the nozzle and the

spontaneous condensation process. The theoretical investigation

of steam nozzle flows [1.13], [1.14], [1.16], [1.17] have mostly

been conducted from the point of view of obtaining the pressure

rise, moisture levels and the decrease in the nozzle efficiency

associated with the spontaneous condensation process. More

recently, Turner et al. [I.01] have investigated the use of

subsonic nozzles for the formation of monodisperse particles in a

system of interest for industrial powder production. A mixture of

nitrogen and aluminum sec-butoxide vapor was considered.

While several theories have been proposed for obtaining the

nucleation rate during spontaneous condensation, the two main

theories of interest are the classical theory (known as the

Frenkel and Volmer theory) and the theory developed by Deich et

al. The most widely adopted classical nucleation theory is

discussed by many authors [1.18], [1.06], [1.19], [1.20]. Deich's



nucleation theory is reviewed by Moore [1.16] and Kadambi and

r_nirlow [1.14]. The derivation of the classical theory is based

upon the kinetic theory [1.18]. The nucleation rate can be

expressed as a function of thermodynamic properties and the

surface tension coefficient. Deich's theory accounts for two

components of the formation of nuclei. The first one arises from

the so-called "heterophase fluctuations", which means that

statistically a number of molecules will clump together and form

a droplet size equal to or greater than the critical size

necessary for survival and _ubsequen_ growth. This component

corresponds to the classical theory but considers more realistic

conditions about the steadiness of the droplet generation and is

considerably smaller in magnitude than the classical theory. The

second component arises from the fact that the critical size

depends upon the vapor condition in a fashion such that during

expansion in the nozzle, the critical droplet size decreases. As

a result, some droplets formed at subcritical sizes are

transported, before they can evaporate, to a downstream region

where their sizes become super critical. The final nucleation

rate is the addition of the two components. It can be shown that

the second component is usually of order of magnitude much higher

than the first Gne and is directly proportioned to the expansion

rate in the nozzle.



Oneof the major drawbackof the classical theory is that it does

not directly account for the effect of the rate of expansion on

the nucleation rate, while Deich's theory does. According to

Gyarmathy [1.13], the experimental observation shows that

expansion rate has strong effects on the nucleation rate. It is

also noted that all nucleation theories cannot achieve

satisfactory agreement with experimental data without using any

correction factors. One of the unknown parameters in the

nucleation theory equations, which also has substantial effects

on the nucleation rate, is the surface tension for small

droplets. By using surface tension ratio as correcting fa:tor,

Moore [1.16] showed that the classical theory cannot obtain

agreement with the experimental data of pressure ratio and mean

droplet radius simultaneously. The other drawback of the

classical theory is that it can not establish usable correlations

between the flew conditions and the correcting factor. Such

correlation is especially desirable if the method has to be

utilized for predicting various new flow conditions. Salzanov

[1.17] has used surface tension for flat surface in his study and

uses a correction coefficient in the exponential term for the

nucleation rate in the classical theory equations. He varied the

value of the coefficient to obtain agreement with experimental

pressure ratio and obtained a correlation between the correction

coefficient and the inlet total pressure. However, only three



data points were considered in a pressure range P < 40 psia and

there was considerable scatter.

i.i Objectives

The objective of this work was to develop a theoretical/numerical

model of the flow of vapor and vapor/inert gas mixture in a

supersonic nozzle with spontaneous condensation, capable of

predicting droplet size distribution. The model would be a

useful tool to design nozzles to obtain desired micron sized

droplets. Steam was selected as the vapor because of

availability of experimental data to verify the model. The

classical and the Deich's nucleation theories were used in this

study to provide a comparison between the two.



CHAPTER 2 DESCRIPTION OF SPONTANEOUS CONDENSATION PHENOMENA

2.1 Introduction

To generate relatively monodisperse particles, a spontaneous

condensation based monodisperse particle generator is proposed.

The analysis will consist of the expansion process of both the

supercooled vapor phase and condensed liquid phase. The variables

which define the characteristics of the two phases are related by

the conservation laws of mass, momentum and energy" of the whole

system as well as the "life history" of the condensate: when are

the droplets born? what are their sizes and nun.bet when first

born? how will they grow? Before we present all the governing

e_aations and calculation procedures, it is benefisial to define

some of the fundamental concepts and outline the specific problem

we will be dealing with in the later analysis.

2.2 Homogeneous Condensation In A Supersonic Nozzle Flow

Let us consider a vapor expanded from a superheated state such

that it crosses the saturation line. If the expansion is



relatively fast, the vapor will not have enough time to adjust

itself immediately for the condensation. Rather, it will remain

as vapor even after crossing the saturation line. This vapor

phase which is in a meta-stable equilibrium condition and behaves

like superheated vapor is referred to as "supercooled vapor'.

Very often, the name "supersaturated" or "subcooled" is also

used.

_en a vapor or a mixture of vapor and gas is expanded in a

nozzle in a relatively high expansion rate, condensation may be

delayed with respect to the equilibrium states (as described in

the previous paragraph, no condensation occurs even after

crossing the saturation line). The supercooled vapor continues to

expand just like a superheated vapor. At certain point called

Wilson point where the supercooled vapor can no longer hold its

meta stable equilibrium condition, further expansion causes a

sudden collaFse of the supersaturation with the formation of

nearly monodisperse droplets appearing in the form of a fog. This

process is called spontaneous condensation or homogeneous

condensation which takes place in absence of any foreign nuclei.

This phenomenon is also observed in supersonic wind tunnels (when

humidity is high and the moisture separates out all of a sudden

in the form of a fog), wet steam nozzles and steam turbine blade

passages. The release of latent heat during condensation results



in adiabatic flow with an increase in pressure.

The phenomenonfor steam er any other vapor flow in a condensing

Laval nozzle is shownin Figure 2.1. The enthalpy-entropy diagram

shows the isentropic expansion vapor from initial stagnation

conditions to crossing the saturation line and staying in a

supersaturated state until at pressure Pw when suddenly

spontaneous condensation occurs. The release of latent heat

causing an increase in temperature and pressure as well as

entropy. This _ressure rise is often misinterpreted as the

condensation shock. As will be shown later, the steepness of the

pressure rise depends mainly on the expansion rate as well as the

stagnation conditions of the vapor prior to expansion. At low

expansion rate the pressure rise is not appreciable. The

supercooling decreases as the vapor temperature, pressure and

entropy increase. Consequently, the supercooled vapor becomes

closer and closer to its equilibrium state. The spontaneous

condensation process takes place in a very short time.

Eventually, at the end of spontaneous condensation shown by

pressure P in Figure 2 1 the supercooled vapor will almost

achieve its equilibrium state and further expansion would take

place almost like an equilibrium isentrepic expansion again.

There will still be a very small amount of supercooling at the

end of spontaneous condensation, and the supercooled vapor will
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gradually recover back to the equilibrium state as the expansion

continues or the adjustment would occur in the form of either

weak oblique shock or expansion wave at the exit of the nozzle

depending on whether the atmospherepressure is smaller or larger

than the exit pressure. Since the degree of supercooling at this

stage is so small (usually only a few degree F), the deviaticn

from the equilibrium case is usually negligible. Besides, the

complex non-e_diiibrium phenomena occurs at the exit of the

nozzle is not our main interests thus will not be discussed in

this work.

A lot of information which would serve for different applications

can be obtained frcm the simulation of the process described

above. For example, the information about velocity and Mach

number variation, as well as the Wilson point and the pressure

distribution would be useful in wind tunnel application; the

wetness level would be useful in examining the erosion on turbine

blades; the entropy increase would be valuable in calculating the

loss in total pressure or the efficiency on turbine application;

etc. Our main interest is to obtain the mean droplet size and

size distribution and proper correlation between the crucial

parameter and the inlet condition so that one can design the

nozzle to give us the desired size and distribution.
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2.3 Fundamental Definitions

%[e have illustrated the physical phencmincn and the model we will

be analyzing in the last setion. Before we can go on to the

mathematical simulation equations, we need to quantitatively

define the degree of supersaturation and some of the important

physical qantities.

2.3.1 supercooling

By assuming isentropic expansion and treating the vapor phase as

an ideal gas with constant specific heat at constant pressure c
pg

and constant specific heat ratio Z, we can greatly simplify our

analysis without losing the essence of the phenomena. As shown in

Figure 2.2, suppose the vapor is expanded isentropically from the

superheated state noted as point T, across the saturation line at

point A to a certain supercooled state B on the Mollier chart

(enthalpy-entropy chart). The location of point B on the Mollier

chart can be determined by the enthalpy drop Ah between the two

states A and B
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P_

Ah : Z RT [ i- ( ) _. < ] 12. )

By shifting the expansion line to the right and left, we can

eventually construct the isobar passing point B which intersects

the saturation line at point C as shown in Figure 2.2. For ideal

gas, the isotherms coincide with the constant enthalpy line.

Since the supercooled vapor is considered to behave just like the

superheated vapor, the isotherm crossing point B will be the

extension of the isotherm in the superheated region. This

isotherm shown in Figure 2.2 has the intersection with saturation

line at point D. Therefore, the saturation temperature

corresponding to the supercooled vapor pressure PB will be Ts(PB)

= T . From Figure 2.2, we can see that
c

Ts < Tc = Ts(ps) (2.2)

The temperature of the supercooled vapor is always lower than the

saturation temperature corresponding to its own pressure. The

supercooling AT is defined to be the temperature difference

between the two:

AT = Ts(PB ) - TB (2.3)
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Supercooling represents the deviation ef the state of the

supercooled vapor from the equilihrium condition. The higher the

supercooling, the larger the extent of the non-equilibri_:m

2.3.2 supersaturation

From Figure 2.2, we can also see that the saturation pressure

corresponding to temperature T is the same as the pressure at
B

point D, ps(TB) = PD
The isobar passing point D lies below the

isobar passing point C which is corresponding to P3' therefore,

we have

PB > PD = Ps (TB) (2.4)

The pressure of the supercooled vapor is always higher than the

saturation pressure corresponding to its own temperature. The

supersaturation s is defined as the ratio:

PB
S = -- (2. 5)

Ps(TB)

The natural logarithm of the supersaturation A is usually more

useful



14

PD

A: ln(p )
s B

(2 _'• ]

2.3.3 critical radius

The stability of a spherical droplet surrounded hy the vapor

phase was studied by Thompson (1870), Helmholtz (1886) and Gibbs

,[1878) [1.18]. Though their work proceeded largely independently,

by considering the chemical potential and mechanical equilibrium,

they found the radius of a droplet in equilibrium with its vapor

can be expressed as

2_
r = (2.7)

cr _pf RT Ag

An alternative expression shown by Kirillov etal. [1.06] is

2_
r = (2.8)
cr T

g

The detail derivation can be found from Kirillov et al. [1.06],

and will not be presented here.
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The significance of the critical radius is that it defines the

minimumsize of the droplet able to survive under the given vapcr

conditions. If the droplet radius is below the critical radius,

the chemical potential of the liquid phase increases, and the

liquid phase tends to convert to vapor, i.e. the droplet will

vaporize. On the other hand, if the droplet radius is beyond

critical, the chemical potential of the vapor phase increases,

and the vapor tends to convert to the liquid phase, i.e. the

droplet will grow. If the droplet radius is equal to the critical

radius, its size will remain unchanged provided the pressure and

Temperature of the vapor phase remain the same. Thus, only those

droplets which have reached the critical size can serve as the

condensation nuclei. As shown by Kirillov et al. [1.06], the

critical radius is primarily affected by the supercooling AT (or

A which is closely related to AT) and is insensitive to the

change of pressure.



CHAPTER 3 NUCLEATION THEORIES

Though it is not the purpose of this work to review the

development and status of the spontaneous nucleation theory in

detail, it is important to consider the basic concepts and do a

comparison of the two theories used in this work. The detailed

historical evolution and discussion can be found in various books

and articles [3.01], [1.18], [1.20], and it is sufficient to say

that the the theoretical prediction cf the nucleation rate is

still in doubt by several orders of magnitude.

in the absence of foreign nuclei or during the rapid expansion

where the condensate accumulation on the foreign nuclei is small

enough to be negligible, the condensation will be delayed with

respect to equilibrium state. As will be discussed later, the

spontaneous condensation process can be viewed to start from the

formation of very small droplets of critical size whose typical

-9
order of magnitude is around i0 m. These droplets serve as the

"condensation center", on which the supercooled steam condenses

thus causing the droplets to grow. The nucleation theories

predict the rate of formation of such nuclei providing the number

of nuclei per unit time per unit volume or mass.

16
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3.1 Classical Theory

The most commonly used classical nucleation theory was derived by

Volmer [3.02]. Frenkel [3.03] using a different approach also

derived the identical equation. The basic idea is to postulate

[3.04] that the probable number of molecular clusters formed by

random collisions is proportional to Boltzmann factor,

exp(-AS/k), where AS is the entropy decrease associated with the

formation of such cluster. AS can be related to the work

associated with the formation of the cluster W as AS = W/T. W can

be further calculated from the sum of different contributions of

the change of Gibbs free enthalpy AG associated with the

formation of such cluster. Furthermore, Farkas [3.05] introduced

a hypothetical quasi-steady process model, in which clusters are

thought to be continually removed and replaced by single

molecules, and there exists a net flux of clusters growing into

critical size. Detailed derivation is described by Wegener

[1.18], or in the original work by Volmer [3.02] and Frenkel

[3.03]. The final expression for the nucleation rate is

?

jzexp[ 31
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0
RTgpf
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Z 2 = 16_N_3

1 _ 3

3pf (RT)g

With the same basic concepts mentioned above, different authors

[1.18], [1.04] derived various revised versions of the nucleation

theories by modifying some of the physical assumptions and

mathematical simplifications. Nevertheless, except Lothe and

Pound [3.06] whose theory predicted 1017 times higher nucleation

rate, all the other theories result in nucleation rate cf similar

order of magnitude as Volmer and Frenkel's theory. None of these

theories, including the theory derived by Lothe and Pound, can

explain the discrepancy between the experimental data and the

theoretical prediction.

3.2 Deich's Nucleation Theory

Deich et al. [3.07] concluded that the classical theory and

Lothe-Pound theory are both unsound. They proposed a nucleation
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theory which consists of two ccmponents. The first component is

due to the so called "heterophase fluctuations'. Due to the

fluctuation of the density in the vapor, two or more molecules

may collide and attach together for a short period. Someof them

happen to be droplets of critical size or larger. _o assumptions

were madeduring the derivation:

i. The vapor has an equilibrium nuclei numberdistribution

before the expansion.

2. The expansion is so rapid such that the number

distributicn of the droplets does not have enoughtime to

adjust, and thus remains at the initial equilibrium

distribution.

This component is similar to the classical theory yet considers

more realistic conditions: a non-equilibrium distribution was

used instead of the e_ilibrium one. The second component is

directly related to the expansion rate. As explained in chapter

2, the critical cluster size is a function of the state of the

vapor. Supposesome droplets of subcritical size are formed at

certain point during the expansicn, if the condition of the vapor

remains the same, these droplets would have been evaporated.

However, since the supersaturation increases and the pressure

decreases during the expansion, the local critical cluster size

maybe smaller than the radii of the subcritical droplets fo._-med

previously. As a result, these subcritical droplets are
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transported, before they can completely evaporate, to a

downstream region where their size is considered t_ _.

supercritical. These droplets then also serve as the conde_,_<_t_ _.

nuclei and constitute the second component of Deich's nucleation

theory. Since there are some mistakes in the original paper by

Deich [3.07] and the equation presented by Moore [1.16], a

detailed derivation is described in Appendix A. The final

equations may be expressed as below:

Deich's_theory_(first_component)

ITA1[z3TA I 2TA]TgAm0/_ l g 0 0 0

g 0 0 exp A2= T - -- T
Jl 8_ 0- 0 0

(3.2)

where subscript 0 stands for the condition before expansion.

Deich's theory_(second component)

Z_2 3T Am /_ - 2T A ]

3 N dAT 1 g 0 g 0

J2 = [ T ] --_ exp-Tgln __STg T A0

(3.3)

The total nucleation rate is:
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j = J + J (3 ,-,Ii 2

When expanding from superheated vapor, A0 : 0 , thus the two

componentscan be further simplified respectively as:

[z23T ]i q 0 (3.5)
J = q 0 exp A 2 TO m
l _ 2T0

[z2 ]3 N dAT _ I 3T_ q 0 (3.6)

J2 Tgln[ T ] --_ exp A2 T_Tmsg 0

In most instances, except in the case of very low expansion rate,

the magnitude of J is several orders greater than J , [1.14]
2 1

thus the total nucleation rate can be approximated by:

J _--J (3.7)
2

3.2.1 Relation between the nucleation rate and the

expansion rate

One of the important term in the dominant ccmponent J2 in Deich's

dAT

nucleation theory is dT As we mentioned before, the
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condensation process is strongly affected by the expansion rate

p. Therefore, it is interesting to see how these two tern _, coui_

he related. For isentropic expansion, the two terms can _c_

related [3.08] as:

- p (3.8)

dt g 9" hfg

Eetailed derivation is shown in Appendix B. Equation 3.8 shows

dAT

that _ and therefore nucleation flux J is directly proportional

to the expansion rate p.

3.3 Surface Tension Of The Droplet With Small Radius

The accuracy which can be achieved in calculating non-equilibrium

czndensing nozzle flow depends ultimately on the accuracy of the

nucleation theo_ l and the droplet growth. The accuracy of the

vractical computation of the nucleation rate, however, depends o))

the accuracy of the properties of the droplets with small radius.

The most important property which has very strong effect on the

nucleation rate is the surface tension _. According to mal_>,

different investigators [3.09], [3.10], [3.11], [3.12], [3.13],

the value of surface tension for a highly curved surface, _ may
r
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be considerably different from _ , surface tension for a f].at

surface. Some researchers suggest that ¢ > _ [3.09], [3.10],
r

while others claim _ < _ [3.11], [3.12], [3.13]. Since no
r

definite conclusion can be made yet, so we adopted a correction

factor, surface tension ratio _ / _ , to obtain agreement
r

between the calculations for the pressure ratio with the

available experiment data.

Although the two nucleation theories are substantially different,

both need the value of the surface tension for droplets with

small radius. As will be shown in chapter 6, for both nucleation

theories, only a small change in the surface tension ratio

results in substantial change in the pressure ratio, mean droplet

radius, and droplet size distribution. A higher surface tension

ratio tends to delay the onset of spontaneous condensation

(indicated by pressure rise) thus decreasing the Wilson pressure,

increasing the mean droplet radius and causing a slightly larger

variation in droplet radius. The results are relatively ver_,

sensitive to the change in surface tension ratio. It will be

shown later, although the correlations for surface tension ratio

of the two nucleation theories have similar trend, the one

obtained using classical nucleation theory is not an acceptable

correlation due to relatively large scatter in the correlation

data.
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It has to be noted that m is a strong function of temperatu<,_e

(_(T)). To interpret it properly, the vapor temperature J'
g

instead of the saturation temperature T (p), should be used,
s

because the droplet has the same temperature as the vapor when it

is freshly formed. Hence, the surface tension should be _ =

m(T ). The equation listed bF Leinhard [3.14] with slight
g

modification in the coefficient was. used to account for the

temperature dependence of _ of water. It may be expressed as:

= 235.3(1 - T R)

1.256

[i - 0.625(1 - T )] x I0

-3 -i
Nm

where reduced temperature is defined as

(3.9)

T
g

T =
R 647.286

(3 .i0)

and T is in K.
g



CHAPTER4. DROPLETGROWTHPHENOMENA

4.1 Droplet Growth Rate (Heat Transfer Coefficient)

The preceding chapters treated the birth of the droplets, their

size and number. The next step of the analysis would be how will

they grow? We have pointed out in the previous chapter that the

temperature of the freshly formed droplet is equal to the vapor

temperature. However, as expansion continues, _he vapor

temperature decreases faster than the temperature of the

droplets. Thus, a temperature gradient is established between the

droplet and the surrounding supercooled vapor. Consequently, heat

transfer occurs between the two phases, which causes the droplet

to grow. The detailed microscopic mechanism of the condensation

process of a supercooled vapor is quite involved and beyond the

scope of this work. However, the process can be simp]y

illustrated by the following.

Let us consider a control volume of the vapor immediately

adjacent to the droplet in Figure 4.1 with temperature

distribution T(r) . If the droplet temperature is higher than the

surrounding supercooled vapor temperature T >T , without ]_<,_,i_i
f g

25
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the detail distribution of T(r), it is reasonable to say that

Tf>T(r I} and T(r )>Tzg" Hence, heat is transfered from the droplet

to the adjacent vapor Q(r ) as well as from the adjacent vapo__toi

the surrounding supercooled vapcr Q(r2). Whenthe adjacent vapor

rejects more heat than it receives Q(r )>Q(rl),_ phase change

cccurrs and the adjacent vapor condenses. Accordingly, the rate

of condensation depends on the rate at which the latent heat can

be carried away from the vapor adjacent to the droplet surface

into the cooler vapor. If Q(r )<Q(rl),_ then the adjacent vapor

will be heated up and there will have no condensation.

Similarly, in the case of evaporation, the vapor temperature is

higher than the droplet surface temperature which is higher than

the droplet bulk temperature. _en the droplet surface receives

more heat than it rejects, phase change occurrs and the droplet

surface evaporates.

The growth rate (positive for condensation, negative for

evaporation) can be calculated from the energ/ balance of the

droplet

dT

pfcf _ Kr + 4_r2pf _ f(Tf) - h (Tg) = 4_r2_(T - Tf)g g

(4.1)
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The heat capacity term in Equation (4.1) is negligible compa):ed

with the latent heat released as shownby Gyarmathy [1.04], thus

the droplet growth equation can be expressed as

4T[r2pfd-_dr[hg(T)g - hf(T )] = 4T[r2_(Tf - T)_ g (4.2)

To correctly compute the dreplet growth rate, a proper expression

of the heat transfer coefficient _ is important. Since the order

cf magnitude cf the droplet diameter when it is first born

-C

(typically, critical radius of steam r _ i0 "m) is smaller than
cr

-7
the typical value of mean free path (for steam, 1 _ !0 m at

atmospheric pressure), the effect of molecular interaction has to

be taken into account when evaluating _. As droplet grows, the

droplet diameter may eventually become greater than the mean free

path. Hence, the molecular interaction is less important and the

continuum flow prevails. While the transition from rarefied flow

to continuum flow is really gradual rather than sharply defined,

the different flow regimes may be represented by different range

of Knudsen Number

Kn = _ = 4rp
{4.3)

where mean free path 1 can be found from kinetics theory [4.01]
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IIRTg 3_/I = 8 p (,';..4)

4.1.1 continuous flow regime

For Kn < 0.01, the mean free path" is much smaller than the

droplet radius, therefore, the equations of continuum mechanics

avviy [4.Q2] . Since the droplet travels in the same velocity as

the surrounding vapor, the heat transfer process between the

droplet and the surrounding vapor can be approximated by free

convection of a sphere at uniform temperature. The Nusselt number

can be calculated as [4.03]

where

Nu = _(2r) = 2 + 0.43(Gr Pr) 0"25 (4.5)
m k

g

3

g_(Tf_ - T ) (2r)g
Gr = =

9

g(Tf - T ) (2r) (3Kn)'r[g

2
v 8RT 2

g

c_
p

Pr =
k
g

For most vapors, Pr is of order I, R _ 103 -- 104 J/(Kg K), and r



29

-6
is no larger than i0 m in most spontaneous condensation

processes. Suppose the temperature difference and the vapor

temperature are both of order I0- K, and Kn is at the limit i0 ,

the order of magnitude of the last term in Equaticn (4.5) for the

-4
most conservative case would be I0 which can be safely

neglected compared with 2. Thus the Nusselt number will be

cr

(_(2r)
Nu - = 2 (4.6)

m k
g

k

_
c r

(4.7)

Equation (4.2) can now be expressed as

k

dr [h (T)- hf(Tf)] = g (Tf T )Pf d-_ g g r g
(4.8)

4.1.2 free molecular flow regime

OppGsite to continuum flow, the other extreme is the free

molecular flow regime where Kn > 3. Hill [1.19] has derived the

energy transfer equation under high Kn condition, Young [1.05]

rewrites it with an alternative expression as
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p(3' + l)c

dr [ (Tf)] : P (Tf T )
pf _-_ hg(Tg) - hf 2_4/_g 23' g

('4 _'

From Equation (4.9), the heat transfer coefficient for free

molecular flow _ is
fm

p(z + l)c
P

= (4.10)

fm _ 23'

which is practically the same expression presented by Gyarmathy

in reference [1.09] utilizing the derivation by Gyarmathy [4.04]

and Kang [4.05]

fm

1 3' + 1 3 Pr
= _ (4.11)

c /-x:--_ _ 4 Kn'

However, the expression of the Knudsen number Kn' in Equation

4.11) is misrepresented as

Kn' = (4.12)
4rp

in Gyarmathy's derivation. Therefore, symbol Kn' instead of Kn is

used in Equation (4.11).
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4.1.3 slip and transition flow regime

There is no simple analysis which can describe the complex

molecular interactions occurred in the flow of intermediate

Knudsen number 0.01 < Kn < 0.i (slip flow) and 0.I < Kn < 3

(transition flow). A simple analytical model suggested by Young

[1.05] postulates that free molecular flew is valid within a few

mean free path cf the droplet surface, while continuum theory

prevails outside this region. The model is illustrated in Figure

4.2. The interface separating the two flow regimes is at radius

(r + al) where the suitable value of parameter a is suggested by

Fuchs [4.06] to be 2. According to this model, Eqaation (4.8) is

valid outside the interface, and Equation (4.9) is valid within

the interface. By replacing T with T at the right hand side of
f i

Equation (4.8), we obtain Equation (4.13). By replacing T with
g

T at the right hand side of Equation (4.9), we obtain Equation
i

(4.14). The two equations are shown as follows:

k

4_r2pf _-_dr[h(T)gg -h (Tf)] = 4_(r + al)2f _--g (TI - T )
(4.13)

h ] P(_ + l)cdr (Tf) = P (Tf T )

pf _-{ g(Tg) - hf _ 2_ i

(4.14)

Note that the latent heat part remains the same as Equation (4.8)



32

and (4.9), for the transition region in the vicinity of the

droplet is considered to retain the same condition and propagate

as the droplet grows. As a result, the net energy change of phase

transformation is the enthalpy change between the droplet and the

surrounding supercooled vapor at infinity. Combining Equaticn

(4.13) and (4.14) by eliminating T , we get
1

(Tf - T)c g

'(i + 2aKn) + 3 _ + I Pr

(4.15)

This equation s identical to the one derived by Young [1.05]

except the more realistic enthalpy change h (T) - h (Tf) is usedg g f

rather than latent heat, and the expression of Kn is also

misrepresented as Equation (4.12) in Young's equation. With a =

0, the equation is identical to that derived by Gyarmathy [1.09]

except Kn should be replaced by Kn' Equation (4.15) not only

correctly approaches the limit of the two extreme flow regimes,

but also provides a smooth transition between the two as well.

Therefore, it is thought that Equation (4.15) can be used for all

values of Kn. It is also noted by Young [1.05] that Gyarmathy's

equation

c
= (4.16)

i + 3.18Kn'
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which is widely used in many low pressure steam studies is

actually an incorrect deduction. For steam at low pressu_:e 3" =

1.3, Pr _ 0.95, Gyarmathy's equation (with a = 0) should be

c
= (4.17)

1 + 3.98Kn'

The difference between the current model with a = 2 and

Gyarmathy's model is sho_.m in Figure 4.3. It shows that while

negligible error is incurred for both high and low values of Kn,

significant deviation exists for moderate Kn.

4.2 Droplet Temperature

The droplet growth rate can also be found by molecular kinetic

considerations [1.09], [1.19] as

p (T)
dr p s f -20"

Pf d-t = _c _e exp ( rpfR------_) (4.18)

_ith the modification which accounts for the vapor moving toward

zhe droplet with a finite bulk velocity and the condensation
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coefficient different from the evaporation coefficient

[4.08], the equation is presented by Young [1.05] as

[4.07],

dr 2_c [ p _ Ps(Tf )
_ [ e exp ( -2o" ]

dt 2 - )
(4.19)

By equating the growth rate found from kinetic theory Equation

(4.18), or (4.19) with the general

eliminating dr/dt, we can obtain an

temperature as done by Gyarmathy [1.09],

Equation (4.15), and

equation for droplet

Campbell and Bakhtar

[4.09], and Young [1.05]. However, the expressions are quite

complicated, and the solution requires an iterative procedure. A

much simpler equation proposed by Gyarmathy [i.09] can also yield

the droplet temperature without the iteration procedure

previously mentioned

r
cr

T = T (p) - AT -- (4.20)
f s r

Young [1.05] argued that a net condensation is occurring and the

droplet may not be in equilibrium with the vapor, yet Gyarmathy's

equation will only be valid by assuming the pressure of the

droplet (after corrected for surface curvature) be the same as

the vapor pressure. Nevertheless, it is shown by Gyarmathy [1.09]



35

that Equation (4.20) yields essentially the same result as the

previous procedure discussed in the beginning of this paragraph.

In addition, Equation (4.20) will reflect the physical meaning of

the critical radius. If the droplet radius is grater than

critical radius r > r then T > T , the vapor will continue
or' f g

condensing cn the droplet; If the droplet radius is less than

critical radius r < r then T < T , the droplet will
or' f g

evaporate. _.en r = r , T = T , the droplet size will remain
cr f g

the same as long as the vapor condition does not change. Also,

the value of condensation coefficient and the relation between

the condensation coefficient and evaporation coefficient remains

unclear. Thus even with the ccmp!ex iteration procedure, the

final solution is still uncertain. Hence, Equation (4.20) will be

used in the current model.

4.3 Droplet Radius and Spectrum

With Equation (4.2), (4.15) and (4.20), we have the complete

information to calculate the droplet radius. Since droplets are

continuously generated in different sizes by spontaneous

nucleation during the expansion, we would divide the expansion

process into many intervals, and the droplets generated in each

interval will be treated as one group. Different groups of



3_

droplet then would have different numbers, sizes and

temperatures, i.e. droplet spectrum. Before we can derive the

equations for accounting of different groups, two questions have

to be answered. First, will the droplets collide with each other

thus affects the spectrum? Second, what is the effect of the

foreign particles?

4.3.1 coagulation

Coagulation means the formation of larger droplet by collision of

small droplets. Thermal (Brownian) motion is the main cause of

the coagulation. Stein [4.10] has sho_m that for a typical

transit time through a condensation zone of 102 Nsec, a droplet

of radius 30 A will undergo approximately one collision with

another droplet, which is a frequency considered to be negligibly

low to result in coagulation. Wu [4.11] also estimated and

concluded that time for coagulation process is longer than the

nucleation process, thus the effect of coagulation is negligible.

4.3.2 effect of foreign particles

Oswatitsch [4.12] first showed that the condensation by

heterogeneous nucleation does not contribute significantly to the

amount of condensate during rapid expansion in supersonic nozzle.
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It is found that even hy assigning generous growth laws on

foreign nuclei, the time available is too short for the formation

of appreciable amount of condensate. The number of m_c]c,_

generated by spontaneous nucleation far exceeds the number of

existing foreign particles. In an interesting experiment, ]A_c]<]e

and Pouring [4.13] artificially introduced a large number of

8
smoke particles (up to i0 particles) at the inlet of a

supersonic nozzle. The result showed that there was no effect of

seeding on the condensation process in the nozzle. It is worth

mentioning here that condensation on the nozzle wall surface was

estimated by Gyarmathy [4.04] to be negligible.

4.3.3 equations for droplet accounting

The radius of a group of droplets formed at location x and
i

currently located at location x can be found by integrating

Equation (4.2) from x to x
i

r (x ; x) = r (x) +
1 l c: 1 _X _i ' ) [Tf, i (x ;x')-T (x') ] dx'

(xl;x' I

pf[h (T
, g g
=x

(x'))-hf(Ti(x_ :;x'))]C(x')

(4.21)

From Equation (4.15), heat transfer coefficient can be expressed
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as

k /r (x; x)
_. (x ; x) = g _ _ (,_._)
i l 1 16 _ Kn

+

(i + 4 Kn) 3 Z + 1 Pr

From Equation (4.20), the droplet temperature can be expra_c_d as

r (x) ]
Tf, i(x; x) : T (x) + AT(x) i. cr 1

i g ri(x; x)

(4.23)

If we dencte wetness as

w (x ; x) = J(x ) 4 3 1
_ _ _ _ r (x ; x) p_• . _ i . c(x)

I

(4.24)

, the average droplet temperature can be defined as

_ =0

1

Tf(x) = w(x)

w.(x.; x) T (x ; x) dx
l Z f,i 1 i

(4.25)

, and the total wetness will be

w(x) =
X =0
i

w.(x; x) dx
l i

(4.26)



CHAPTER 5. MATHEMATICAL FORMULATION OF MODEL AND

NI/MERICAL SOLUTION TECHNIQUE

A model of supersonic flow of a vapor in a Laval nozzle w_z

developed. Coagulation, as discussed in chapter 4 is not

significant for nozzle flow and therefore was not considered. It

was also assumed that the effect of foreign nuclei is negligible

in the flow. The model consists of the constitutive equations,

nucleation theory equations and equations for droplet growth and

accounting.

5.1 Nucleation Rate

The equations of nucleation rate were derived in chapter 3 and

will not be presented here again. Equation (3.1) is for classical

theory, and Equations (3.2), (3.3) and (3.4) are for Deich's

theory. In the cases where expansion starts from superheated

vapor, Equations (3.5) and (3.6) are used for Deich's theory.
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5.2 Droplet Growth and Accounting

For obtaining the droplet growth and accounting the numb(_):of

droplets Of various sizes, the equations for critical radius,

r , (minimum radius of a droplet which can survive) ; drop!c_
cr

temperature, T ; droplet radius, r ; average droplet
f,i 1

temperature, Tf; heat transfer coefficient, _ ; wetness, w ;
1 l

total wetness, w, are needed. These equations have been derived

and discussed in chapter 2 and chapter 4. A summary of the

equations to be used is presented as follows.

Critical Radius r (x) : Equation (2.7)
cr

Droplet Radius r (x ; x) : Equation (4.21)
1 1

Heat Transfer Coefficient _ (x ; x) : Equation (4.22)
i i

Droplet Temperature T (x ; x) : Equation (4.23)
f z

Wetness w (x ; x) : Equation (4.24)
1 l

Average Droplet Temperature Tf(x) : Equation (4.25)

Total Wetness w(x) : Equation (4.26)

5.3 Constitutive Equations

Instead of using the differential form as in most investigations,
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the integral form equations are used whenever possible. This

greatly improves the computational efficiency. The equation for

axial velocity, c, was obtained using the differential for!n o[[

the continuity, momentum and energy equations. Detailed

derivation can be found in Appendix D. It is assumed that the

droplet travels with the same velocity as the vapor phase, and

the vapor phase can be treated as an ideal gas. There are some

instances where real gas effect play an important role in the

expansion process such as condensation of carbon-dioxide [1.19],

high pressure steam [1.05], [5.01] etc. However, this effect is

not important for low pressure steam as in the cases for

experimental data used for comparison with the theory and the

real gas effect can be included into the analysis and computation

without difficulty whenever necessary.

The temperature dependence of the various properties are

considered in the analysis. The temperature range of interest for

O

the study cases in this work is between 0 to 130 C. The

temperature dependent properties needed in the analysis include

cp, of, pf, _, _, and k;. Among them, the constant value cf =

4198 J/(Kg.m) is used. Compared with cf at the saturation line

[5.01], this will give the maximum error < +0.5% between 0 -- i00

O O

C, and < -1.5% between i00 -- 130 C. The choice of Such value
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is justifiable, for the higher temperature range is rarely

encountered in the current cases studied. Also, since the actual

c of the compressed liquid droplet tends to be lo_:er than that

a_ the saturation line, the average error between I00 -- 130 °C

will be even smaller. For similar reason and simplicity, the

constant c = 1998 J/(Kg.m) is also used. Nevertheless, the
P

temperature dependence can be incorporated into the analysis

without difficulty when different .temperature range is of

interest. Surface tension _(T ) is described by Equation (3.9) to
g

an accuracy of Z0.2% between 0 -- 130 °C (compared with data

adopted from [5.02]). Thermal conductivity k (T) can be
g g

calculated to an accuracy of ±0.5% in the temperature range 0 --

130 °C (compared with data adopted from [5.03]) as

k (T) = 1.82 x 10 .2 + 5.8343014 x 10 -5 T
g g g

- 5.888523 × 10 .8 T 2 - 4.51 x I0 -II T 3 W
g g [--_

(5.i)

0

where T is in C. Viscosity N(T) can be calculated to an
g g

o

accuracy of ±0.4% in the temperature range 0 _ 130 C (compared

with data adopted from [5.03]) as

;_(T ) = (0.398 T + 80.2) x i0 -7 Pa.s (5.2)
g g
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o

where T is in C. The liquid phase density p_(Tf) can beg -

expressed to an accuracy of ±0.1% in the temperature range 0 --

o

130 C (compared with data adopted from [5.03]) by the following

equation [5.04].

where

8 T

pf(Tf)_ = pc [ 1 + _ Di=l i (1- T--)cf i/3 ]

p = 317.0 Kg/m 3
C

T = 647.286 K
C

D = 3.6711257
1

D = -2.8512396 x !01
2

D = 2.2265240 × 102
3

D = -8.8243852 × i0-
4

D = 2.0002765 x 103
5

D = -2.6122557 x 103
6

3
D = 1.8297674 × I0
7

D = -5.3350520 × 102
8

(5.3)

The constitutive equations are listed for both single component

condensing vapor and two component (condensing vapor and inert

gas) models.
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5.3.1 single component model

Continuity p :
g

p _
g

c A
in in

c A Pin (l-w)
(5.4)

Equation of velocity c :

dc

dx

where

c IdA 1
M2 1

l-w

M 2 =

;7 C
f

(l-w)c T
P,g g

2
(c - R) c

P

c RT
P

(5.5)

h' = h (T) - h _(Tf)
f,g g g f

dw

The derivative of total wetness _ in Equation (5.5) is derived

in Appendix C to be
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1 4 3(x) - (x K r (x) p J(x):. c ) 3 cr •

.$<

r (x ; x) _ (x ; x) J(x ) (x ; x) - T (x) ] dx

47[ i i i i i [Tf, i i __ i

+ _ :0 [h (T <x)) h (Tf (x ; x})] c(x,)
xi g g f ,i '_ 1

(5.6)

Energy equation T :
g

2
C

-- + (l-w) h (T) + wh (Tf) = h (5.7)2 g g f o

Equation of state p, (for vapor and supercooled region):

p = p R T (5.8)
g g

5.3.2 two component (condensing vapor and noncondensing gas)

model

The two components considered here are the condensing vapor and

the noncondensible gas which does not react with the condensing

vapor, nor has condensation. It is assumed that vapor phase

temperature for both components is the same and is represented as

T . The pressure of each component is represented by partial
g
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pressure. The mass fraction of the condensing vapor contained in

the mixture at the beginning of the expansion is denoted by w
0

If subscripts n and v denote the noncondensible gas and the

condensing vapor respectively, partial pressure can be defined as

p = p + p
V n

(5.9)

p = y p (5.10
v

p = (i - y) p (5.11

(w 0 - w)/ M v
y = (5.12

(1 - wo)/M R ÷ (w° - w)/M v

For two component model, the nucleation rate and droplet growth

and accounting equations are the same as single component model

except that partial pressure p has to be used, and all the
V

variables should now be referring to the condensing vapor in the

two component case e.g. gas constant R, number of molecules per

unit mass N etc. The supercooling and supersaturation will now be

evaluated as

AT = T (p ) - T (5.13)
s v g
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A = in(p v / Ps(T ))
g

(5.14)

The expressions of the constitutive equations are, however,

somewhat different from the single component model. They are

presented as follows.

Continuity p :
g

Pq
• C A = CA (5.1S)

Pzn in in ! - w

Here pg is the density of the whole vapor phase including

condensing vapor and inert gas. A mean molecular weight can be

defined as (see Appendix E for derivation)

l - W
M = (5.16)

(l - _o)/M_ + (w° - w)/M

The relationship between pq and @v' Pn can be shown to be

(Appendix E)
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P P P
g v . n

M M M
g v n

(5.17)

Equation of velocity c :

The equation of velocity can be derived with the same procedure

as one component case (explained in Appendix D)

{ [
dc c 1 d_h 1 / M
-- = v

dx M+2 1 i _ + (1 - w)/M + (w - w)/- 0 0 "z

(5.18)

I

_v j_w we dT_
- (Cp0 - WCpv)T dx-x](cp0 WC_v) T _ + g

where

M ÷2 2{c 1

= %-g R[(I - w0)/M_ ÷ (w° w)/Mv] cp0
i }- WC

pv

I

hfv = h (T) - hf(Tf)v g

= - + W C

cp0 (I w0) Cpn 0 pv
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Energy equation T :g

2 •
c

-- + c (T - T ) w h = 0 (5.15)
2 _0 g 0 fv

Equation of state p :

(i - Wo) / M n + (w 0 = W)/ M v
p = p R T (5.20)

g 1 - w g

5.4 Numerical Solution Technique

The solution procedure used for solving these equations was as

follows. Initial values of the temperatures, velocity c, density,

etc., were known. Finite difference approximations were obtained

for d(AT)/dx and
1 dA

A dx
The solution procedure consisted of

guessing the values of T , pressure p, velocity c, and radius r ,
g i

and using an iterative procedure to solve all the equations to

get a new set of the values of the variables at the grid point.

The procedure was then repeated for the next point. A fourth

order Runge Kutta method was used for solving Equaticns (5.5) and

(5.18).
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It can be observed that Equations (5.5) or (5.18) will break dow)_

_..hen the value of the term M2/(I - w) or (M ÷2 i) equa]._

Numerically, prcb!em arises even when M2/(I w) or (M "_ - i) is

very close to I. It is observed from Equations (5.5) and (5.181

that if wetness is not zero, this singular point would occur at a

distance upstream of the actual nozzle throat. How large this

distance is would depend on how large the wetness is. The

nucleation usually starts somewhere upstream of the nozzle

_hroat, hence, _he wetness is usually greater than zero. However,

zhe nucleation rate is usually not high there, and the wetness is

usually small, consequently, this distance is usually small as

well.

The singularity characteristic in two-phase flow equations was

discussed by many investigators [5.05], [5.06], [5.07]. Due to

zhis singular nature, a pure numerical scheme, if employed fo_

solution, will either yield erroneous results or will become

unstable and fail. Therefore, a remedial procedure must be

adopted in this region. One way is to use the differential form

zf the momentum equation. The differential form of the momentum

equation can be expressed as
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dc 1 - w dp
c -r- + = 0

o_x p dx
g

With proper finite difference approximation (Appendix D), the

velocity at next grid point 2 can be computed from the c,> c_ -

grid point 1 as

c (w + w 2) - 4= + " (P2 - Pi )
c2 1 ;91 + P2

(5.22)

Although the above menticned method is easier to implement than

using Runge-Kutta method on the equation cf velocity, its

accuracy is not as good. Fortunately, the axial range of nozzle

where M2/(I - w) or (M +2 - i) is very close to 1 is very short.

Also, this usually occurs very'close to the nozzle throat where

nucleation rate and wetness are small. Therefore, this remedial

procedure does not affect the final result.

In some of the cases studied, the aforementioned technique either

will not converge or does not give the physically acceptable

supersonic branch of solution. Under this circumstance, another

technique has to be used. As we noticed that the pressure ratio

always starts to deviate from the isentropic pressure ratio at
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quite a distance downstream of the the singular point. Therefore,

the pressure ratio can be taken as the isentropic pressure ratio

at the singular point. The velocity is calculated utilizing t]_

differential form of the momentum equation. Until the "dangerous

zone" is passed, the computation is switched back to equai::i._,,_ o_i

velocity. Depending on the different cases studied, the length of

this zone varies. Different machine accuracies associated with

the different computers used do not make appreciable change on

the length of this zcne. Instead of using the isentropic

pressure, the extrapolation of the properties can also be adopted

to solve the singularity problem. When doing so, one has to make

certain that the solution after extrapolation falls into the

correct quadrant of the solution space. Usually, a criteria 6p <

0 and 8x > 0 is used [5.05] where _x is the distance for

extrapolation. In addition, assumptions of negligible nucleation

rate and negligible change of droplet temperature between the

extrapolation points have to be made, and a simplified droplet

growth rate equation has to be applied. Some other techniques are

discussed by Gyarmathy [1.09]. Some studies neglect the

nucleation effect entirely before the throat and start the

computation from the throat, thus avoiding the singularity point

[5.08].



CHAPTER 6 RESULTS AND DISCUSSION

6.1 Single Component Results

6.1.1 Pressure ratio and mean droplet radius

Although the two nucleation theories are substantially different,

both need the value cf the surface tension for droplets with

small radius. The surface tension values for small radius

droplets are not available. According to many investigators

[3.09, 3.10, 3.11, 3.12, 6.01] the surface tension of a small

droplet is different from that of a flat surface and one is not

sure whether it decreases or increases. Therefore, various

values of the surface tension ratio (_/_) were tried to obtain a

good agreement between the calculated pressure ratio with the

experimental results. Sixteen test cases for which experimental

data were available were studied. A summary of inlet total

conditions, Wilson pressure, surface tension ratio, the mean

radius as well as the standard deviation at the end of

computation (not necessarily the nozzle exit, depending upon the

nozzle geometry information available) is presented in Table 6.1.
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The pressure ratio along the nozzle length obtained usi]%g

classical and Deich's nucleation theories compared reaso_b]y

well with the experimental data. Results of pressure ratio and

droplet size distribution for all the sixteen cases are provided

in Figures 6.1 to 6.48. It is observed that in all cases, the

final droplet size distribution is quite monodisperse. However,

Deich's theory gives slightly hotter agreement with experiments

in general. Computation also shows that Deich's theory gives

better monodispersion regarding the droplet size distribution and

smaller mean radius (see Figure 6.6).

Experimental information on mean droplet size are scarce and only

the data provided by Gyarmathy and Meyer [1.13] was available for

comparison. Figure 6.49 shows the comparison between the mean

radius predicted by using Deich and classical nucleation theories

and the experiment (Gyarmathy and Meyer Nozzle data, Table 6.]).

The mean droplet size obtained by using Deich's theory is

reasonably close to the experimental data, while the classical

theory tends to overestimate the droplet size. However, it

should be noted that as mentioned earlier the surface tension

ratio were varied to obtain good agreement with the experimental

pressure ratio and the same value of the surface tension ratio

was used for ascertaining the droplet sizes.
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6.1.2 Ty.pical results off some important variables

The results of the sixteen test cases investigated showed sj_:i !_

trends. Therefore, we will only present the result of

Barschdorff nozzle test no. 7 as representative of the data.

Figure 6.50 shows the variations of nucleation flux and

supercooling along the nozzle axial distance. Nucleation starts

after a certain a/nount cf supercooling (in this case about 17_C)

is reached. As steam expands, nucleation reaches its peak

slightly upstream of the peak cf supercooling and drops to zero

suddenly after the supercooling peak where spontaneous

condensation occurs due to large number of nuclei. Since most of

the nucleation occurs around the nucleation flux peak, this

accounts for the monodisperse nature of droplet size. The latent

heat released due to this spontaneous condensation causes a sharp

pressure increase, as sho%m in Figure 6.1 through 6.48. Note that

pressure rise occurs at the peak of supercooling cr right after

the peak of nucleation rate, which is the start of the

spontaneous condensation and is defined as the Wilson point. The

latent heat also causes a sudden increase of the vapor

temperature (Figure 6.51) and entropy increase (Figure 6.52), and

results in bringing the vapor toward an equilibrium state rapidly
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from a supercooled state. Consequently, supercooling dec)re:_s_

rapidly during spontaneous condensation. At the end :_i

spontaneous condensation, usually defined at where supercoo]:iqC

stops to decrease and remain constant, the state of vapor is

close enough to the equilibrium state (about 3°C supercoo]i!_: {

this typical exa_,ple), and the expansion proceeds almost like

normal equilibrium expansion. The pressure (Figure 6.1 through

6.48) and vapor temperature (Figure 6.51) decrease again similar

to where normal equilibrium expansion takes place, and the

entropy increases in a muchslower pace (Figure 6.52).

Figure 6.51 shows the vapor temperature T , liquid temperature
g

T , and the e_ai!ibri_m saturation temperature at the vapor
f

pressure T (p), along the nozzle axis. The result indicates that
S

the liquid temperature T is the same as T at the beginning of
f g

nucleation. At the end of spontaneous condensation, Tf and T s

are very close, which means that the liquid phase is almost in

equilibrium, while the vapor phase remains at a constant

supercooling (about 3°C). We can also observe from this figure

that wetness becomes appreciable after the sudden pressure rise.

Before the Wilson point is reached (i.e., sudden pressure rise or

start of spontaneous condensation), the increase in the wetness

is mainly due to the new nucleation which is so small that the

steam is practically dry. After the Wilson point, which is also
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the end of nucleation and the start of spontaneous condensation,

the existing large amount of nuclei (nucleated around t_e

nucleation flux peak) provide a large surface are_ _o_:_

condensation which causes a rapid increase in wetness.

Mach number and entropy are shown in Figure 6.52. The variation

in the Mach number and the _ntropy along the nozzle axis is

similar to the pressure variation. Before the occurrence of

spontaneous condensation, Mach number increases, entropy remains

constant and expansion is isentrcpic. During spcntaneous

condensation, Mach number decreases and entropy increases because

of the pressure rise and release of latent heat. After the end

of spontaneous condensation the vapor is almost in a

thermodynamic equilibrium state, the expansion is nearly

isentropic and the Mach number increases again.

Figure 6.53 shows the growth of mean radius and Sauter mean

radius of the droplets and the variation in critical radius along

the nozzle axis. Mean radius is defined with the same amount of

wetness and the same total number of droplets. Sauter mean radius

is defined by the ratio of the total volume to the total area of

all the droplets. Sauter mean is slightly larger than the mean

radius in all the study cases here. It should be noted that the

smaller the difference between the two mean, the better the
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monodispersion would be. The droplet growth rate is basically

proportional to the temperature difference between the droplet

and supercooled vapor. In the nucleation zone (before the _,_i,_c_i_:::

of spontaneous condensation) in spite of the increasing

temperature difference (Figure 6.5!), the droplet growt]_ <_ _<

remains small due to the presence of the large number of newly

formed small nuclei. At the end of nucleation and at the

beginning of the spontaneous condensation, mean radius grows

rapidly because no new small nuclei are being formed. Near the

end of spontaneous condensation, the temperature difference

becomes small, therefore, the growth rate slows down again. The

critical radius decreases in the nucleation zone, which also

justifies the consideration of the second component of nucleation

in Deich's nucleation theory. The results of droplet size

distribution at the end of the expansion are presented in Figure

@.I to 6.48. From the figures, we can see that good

monodispersion exists for all study cases.

The nozzle expansion rate and velocity for Barschdorff No. 7 are

showm in Figure 6.54. The shape of the expansion rate curve of

each case studied mainly depends on the nozzle geometry. The

velocity curve displays similar trend as the Mach Number.

Figure 6.55 depicts the Knudsen Number and Prandtl N_mber. In all
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the cases studied, Prandtl Number decreases before Wilson point

is reached, rapidly increases during the spontan_:'<>u:_

ccndensation, and stabilizes to remain nearly constant aftc_: !]_<

spontaneous condensation. The change in Prandtl Number is small,

and the value is around .95 for all study cases. The ]<)_i _<_!_

Number always increases at the early stage of the expansion wbe[e

the pressure is decreasing and the droplet growth rate is very

slow. When droplet growth rate starts to pick up, the value of

Knudsen Nun_er drops sharply until the droplet grcwth rate slows

dcwn. In most cases the effects of pressure drop and drcplet

growth eventually balance cut, and the Knudsen Number would

remain fairly constant through the rest of the expansion. The

range of the value of Knudsen number varies nozzle by nozzle. In

the cases studied, it ranges from one to a few hundreds. Thus

we know that for most cases the flow is under free molecular flow

regime (Kn > 3) and sometimes under slip and transition flow

regime (0.01 < Kn < 3). The continuous flow regime (Kn < 0.01)

is almost nonexistent.

The two components of the nucleation rate for Deich's nucleation

theory are presented on Figure 6.56. The second component J2 has

always been a few order of magnitude smaller than the first

component J in all our study cases. However, depending on the
1

condensing vapor used, expansion rate, and the initial condensing
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vapor content, it is possible that

overwhelm the first component.

the second component may

6.1.3 Correlation for surface tension ratio

In this study the surface tension ratio values were varied to

obtain agreement between the theoretical and experimental

pressure ratios. It is therefore important to establish relevant

correlation for the surface tension ratio so that a proper value

can be used for designing new nozzles and analyzing nozzles for

which experimental data does not exist. Thus, obtaining

correlation for surface tension ratio for the nucleation theories

is very important. Various correlations were tried and the

results showing inlet total temperature, Wilson pressure, inlet

total pressure and inlet total entropy for the two nucleation

theories are presented in Figure 6.57 to 6.64. Apparently, inlet

total temperature does not yield acceptable correlation for both

nucleation theories. The correlation yielded by Wilson pressure

seem to show a positive trend. However, since the Wilson pressure

is not known _ pa/_, a correct value of the surface tension

ratio cannot be assigned. A more difficult iterative procedure is

needed to implement the Wilson pressure correlation in nozzle

design. On the other hand, the usage of inlet total entropy and
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pressure correlations are rather straightforward and need no

iteration procedure since the inlet conditions are always known.

In addition, the Wilson pressure correlation data prese_J_-sthe

larger scatter than inlet total pressure and inlet total entropy

correlations.

The correlations utilizing inlet total pressure and inlet total

entropy seemto be the most promising. However, the slope of the

correlation based upon inlet total pressure at the region of

small total pressure is so steep that a small uncertainty in the

correlation would trigger a large error in the predicted surface

tension ratio. As a result, the correlation between the inlet

total entropy and surface tension ratio is chosen. From Figure

6.63 and 6.64 we found that the trends on the variation of

surface tension ratio with inlet total entropy for Deich's and

classical nucleation theories are similar. However the scatter

for the classical theor_ data is larger than that for Deich's

theory. The correlation coefficient (which is defined in Appendix

G) for Deich's theory can be computed as -0.9394 and for

classical theory to be -0.9337. The larger correlation

coefficient for Deich's thecvz shows that it gives better

correlation. In the next seczion it will be shown that the

pressure ratio, mean droplet size and droplet size distribution

are quite sensitive to the value of the surface tension ratio.
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Therefore, the correlation for Deich's theory with less scatter

was adopted. Additionally, the classical theory, as indicated

earlier, tends to overestimate the droplet size.

6.1.4 Effects of parameters

A. effect of surface tension ratio

The effect of the variation of surface tension ratio on pressure

rise associated with spontaneous condensation, mean radius and

droplet size distributions are shown in Figures 6.65, 6.66 and

6.67 respectively. These results were obtained by using different

values of surface tension ratio for the Barschdorff nozzle No. 7

for the same inlet conditions P0 = 78323 Pa, T O = 388.44 K.

Higher surface tension ratio which gives a smaller nucleation

rate and broader nucleation zone will delay the onset of

spontaneous condensation (indicated by pressure rise) thus

decreasing the wilson pressure. The total amount of heat transfer

can be roughly measured by the extent of the pressure rise. From

Figure 6.65 we found that the total amount of heat transfer is

about the same for different surface tension ratios. The mean

droplet radius is smaller at first in the case of larger surface

tension ratio since the nucleation starts later compared with the



63

case of smaller surface tension ratio. When spontaneous

condensation takes place later, the mean radius starts to grow

rapidly. With the approximately same amount of total heat

transfer and the smaller numberof nuclei given by larger surface

tension ratio, more heat transfer takes place on each individual

droplet. Consequently, the meandroplet radius of larger surface

tension ratio eventually outgrows those of smaller surface

tension ratio (see Figure 6.66), and causes a slightly larger

variation in droplet radius (Figure 6.67). The results are

relatively very sensitive to the change in surface tension ratio.

This reaffirms our previous statement concerning the inability to

obtain an acceptable correlation for surface tension ratio using

classical nucleation theory due to relatively large scatter in

correlation data.

B. effect of inlet total temperature

The effect of inlet total temperature is investigated by

comparing Barschdorff's nozzle test No. 4, 7 and I0 at an inlet

total pressure cf 11.36 psia. From Figures 6.68, 6.69 and 6.70,

it is observed that for a given nozzle geometry and inlet total

pressure, a higher value of inlet total temperature delays the

onset of spontaneous condensation and therefore decreases the
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Wilson pressure and mean droplet size and gives a relatively

smaller variation in droplet radius. The inlet total temperature

in general does not affect the nucleation rate. Thus, the mean

droplet radius for higher inlet total temperature does not have

the outgrown effect similar to the cases of different surface

tension ratio.

C. effect of inlet total pressure

The effect of inlet total pressure is obtained by comparing the

results for the tests performed on nozzle of Barschdorff with

total temperature T = 388.44K, and different pressure at 75974
0

Pa, 78323 Pa and 80673 Pa. Proper surface tension ratios are used

according to the correlation developed in the previous section.

The inlet total pressure like the inlet total temperature in

general does not affect the nucleation rate. It is observed from

Figures 6.71, 6.72 and 6.73 that lower inlet total pressure

delays the onset of spontaneous condensation and therefore

decreases Wilson pressure and mean droplet size and provides a

relatively smaller variation in the droplet radius. The effect is

similar to that of higher inlet total temperature. However, the

results are more sensitive to the change of inlet total pressure

than to the change of inlet total temperature.
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D. effect of expansion rate

In the previous sections, the effects of parameters are

considered for the same nozzle with different inlet total

conditions and/or different surface tension ratio. The expansion

rate is determined by the nozzle geometry. Hence, in this

section we shall consider the effects of different expansion

rates (thus different nozzle Geometries) with the same inlet

total conditions and surface tension ratio. The results obtained

for the three nozzles designed in the next chapter are used i.e.

Nozzle NZII with expansion rate 2500 I/sec, NZI2 with expansion

rate 5000 i/sec and NZI3 with expansion rate i0000 I/sec. The

inlet condition, total temperature 500 K and total pressure 1.7

MPa is used.

In Figure 6.74 we can see that for higher expansion rate the

larger area ratio causes smaller pressure ratio and the onset of

condensation takes place earlier. The higher expansion rate

generates higher nucleation rate and narrower nucleation zone.

Although the total amount of pressure rise, thus the total amount

of heat transfer, is about the same for different expansion rate,
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the pressure rise is steeper for the higher expansion rate case

since heat transfer takes place faster due to more nuclei

available. The mean radius of lower expansion rate nozzle is

smaller compared with the higher expansion rate nozzle due to

delay of the onset of condensation. However, when spontaneous

condensation occurs later, with the same amount of total heat

transfer and less droplets, more heat transfer takes place for

each individual droplet in the lower expansion rate case. As a

result, the mean radius of lower expansion rate nozzle eventually

outgrows the one of higher expansion rate nozzle.

Figure 6.75 shows the droplet sizes at the end of the expansion

through the nozzle and we can observe that the higher expansion

rate nozzle NZI3 yields smaller mean radius = .I _/m as compared

-i

to .25 _m for the nozzle of an expansion rate 2500 sec The

variation in the droplet radius is also smaller fcr the higher

expansion rate (Figure 6.76).

From the preceding discussions, we can conclude that the droplet

size distribution and the droplet mean radius is a function of

the inlet total pressure and temperature and the nozzle expansion

rate. It is also sensitive to the value selected of the surface

tension ratio. However, the variations (fluctuations) in the

droplet radius are relatively insensitive to these parameters.
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The variations in the droplet radius, for most of the cases

studied, were within ± 0.01 _m. This indicates that the droplet

sizes stay relatively monodisperse for various values of the

parameters. A summary of the mean radius at the end of

computation for the sixteen cases is provided in Table 6.1. The

droplet radius varies from 0.003 Nm to 0.074 _m depending upon

the inlet total condition and the expansion rate. We can thus see

the importance of manipulating the parameters to design a nozzle

which can provide monodisperse droplets of desired radius.

6.2 _,o Component Results

There are very few experimental data available for two component

(one condensing vapor and one noncondensing vapor) spontaneous

condensation. The vapor temperatures of the two available

experiments both go well below the sublimation line [6.02],

[6.03]. The uncertainties on the free surface energy, the

spontaneous crystallization rate, the thermodynamic properties of

supercooled liquid and ice nuclei, and the validity of the

nucleation theories etc. makes the comparison between the

theoretical numerical result and experimental data hardly

meaningful. However, in order to investigate the effect of
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initial vapor content on the spontaneous condensation, the nozzle

of Barschdorff No. 7 is used in the numerical computations.

6.2.1 Effect of someimportant variables on the results

According to gasdynamics, we know that isentropic pressure ratio

is not only function of area ratio (i.e. nozzle geometry), but

also function of ratio of specific heat _. For a two component

vapor, the ratio of specific heat _ depends on the initial vapor

content. As a result, the pressure ratios for different initial

vapor content for the same inlet condition shou._ in Figure 6.77

are different. Some other typical results for different initial

vapor contents are shown in Figure 6.78 to 6.94. Comparing the

results for w0=l with single component result shown in Figure

6.50 to 6.56, we find that the results are identical. This can be

seen as a validation of the theory and the numerical program.

6.2.2 Effect of initial vapor content

The effect of initial vapor content has a basic difference irom

those parameters presented in the single component case. From

Figure 6.77 we notice that smaller initial vapor content gives a



69

smaller pressure rise. This is because smaller heat transfer due

to phase changeoccurs due to less condensing vapor available. In

single component case, all the parameters studied basically has

no effect on the total amount of heat transfer. Smaller initial

vapor content also delays the onset cf the spontaneous

condensation indicated by pressure rise and in turn the Wilson

pressure. However, contrary to higher surface tension ratio and

lower expansion rate in single component case, smaller initial

vapor content gives higher nucleation rate and narrower

nucleation zone. With smaller total amount cf heat transfer and

more nuclei, less heat transfer takes place on each individual

droplet. Therefore, smaller mean radius (Figure 6.78), better

monodispersion of droplet size (Figure 6.79), and less variation

on supercooling (Figure 6.80 to 6.82) were found in smaller

initial vapor content case. This in turn makes the mean radius

growth rate slow (Figure 6.78) and generates less condensate and

therefore, results in decreases in the wetness (Figure 6.89 to

6.91).

From Figure 6.83 to 6.85 we can also observe that while Pr tends

to be smaller for the smaller initial vapor content, it still

remains in the range of 0.9 to 1.0. On the other hand, Kn changes

substantially with changes in initial vapor contents. The smaller

the initial vapor content the larger Kn would be. Consequently,
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the flow tends to behave as a free molecular flow (Kn > 3).

Another interesting phenomenafound from Figure 6.86 to 6.88 is

that the order of magnitude of the two componentsof nucleation

flux of Deich's nucleation theory are closer in the case of small

initial vapor content. This shows that the stable nuclei

initially formed are so small in the low initial vapor content

case that the unsteady effect (represented by the second

componentof Deich's theory) plays a stronger role. Figure 6.92

to 6.94 shc_; that with decreasing initial vapor content, the

actual ve!oci_y as well as the isentropic expansion rate

decrease.



CHAPTER7 NOZZLEDESIGNFOROBTAININGMONODISPERSEDROPLETS

The objective of nozzle geometry design is to obtain proper

A/A°(x) such that the desired droplet mean radius can be

generated for certain inlet total conditions. In the preceding

chapter, we have discussed the effects of different parameters

To' P0' and p on the mean radius of the droplets. We have also

discussed the correlation between _/_ and the inlet total
0

conditicn. These results form the basis of nozzle geometry

design.

7.1 Equations

The relation among T 0, p/p0(x), p(x), _(T(x)), and cp(T(x)) can

be expressed as [1.09] :

71
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where

1 dp C dp
p = --

p dt p dx

in which p/p0(x) is directly related to A/A (x) and _(T(x)) by

: ( ) _ 1 ¢!) 1 (
A" _ + 1 P0 P0

(7 2)

Since T(x) is not kno_ a priori, the coupling among the

variables in the above equations is rather complicated. In most

cases, however, Z and c are constant in the temperature range of
p

interest. Thus for given T O and p(x), we can derive p/p0(x) from

Equation (7.1), and then derive A/A (x)

convenient way which does not violate

further assume a constant expansion

from Equation (7.2). A

the generality is to

rate. With the above



assumption, Equation (7.1

Newton's Method.
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can be solved for p/p0(x) easily using

7.2 Design Procedure

The following procedure is based on constant Z and c , and
p

utilizes constant expans!on rate and T] as design parameters.

This procedure will lead to a preliminary nozzle profile.

Step 1 : Choose certain T O and p, solve for p/p0(x) from

Equation (7.1) and then solve for A/A (x) from

Equation (7.2).

Step 2 : By changing P0 ( P0 _ P01imit )' we can obtain

different droplet mean radius :

PO T --_ r m T

p0 _ --------9 rm _

is the highest pressure allowable for
P01imit

maintaining as gaseous phase at the chosen T O in

Step I. P0 greater than P01imit is not allowed.

Two options are available in this step:

(a) If r is too small, follow Step 3;
m
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(b) If r is too large, follow Step 5.
m

Step 3 : There are two options in this step:

(a) Start all over from Step i, use the

nozzle with the same T and lower p to
0

obtain p/p0(x) and A/A (x);

(b) Start all over from Step I, use the

nozzle with the same p and higher T to
0

obtain p/p0(x) and A/A (x).

Although both options lead zc larger r , there are

some differences between the two cptions. Using

option (a) one does not have to increase P0

substantially higher to achieve the same increase

in r compared to option (b). However, low

expansion

difficult

variation

rate nozzles are relatively more

to fabricate due to the sma]]cl,

in area ratio. With option (b),

depending on the type of expanding vapor and the

mean droplet size desired, one may have to raise

P0 to an extremely high level which may be

difficult to implement experimentally.

Step 4 : Repeat Step 2 until the desired r is obtained.
m
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The two options exactly opposite to Step 3 are as

follows:

(a) Start all over from Step i, use the

nozzle with the same T and higher p to
0

obtain p/p0(x) and A/A (x);

(b) Start all over from Step i, use the

nozzle with the same p and lower T to
0

obtain p/p0(x) and A/A (x).

Step 6 : Repeat Step 2 until the desired r is obtained.

Variable expansion rate can be easily implemented without

technical difficulties by the same procedure if the resulting

profile is not satisfactory. The experience, trial and error, and

state of art selection of p(x) will then have to come into the

play. Even in the cases where _ and c vary substantially with
p

temperature change, this preliminary nozzle profile can be _!sed

as the prototype for further modifications. An iterative design

procedure can be adopted to perfo-_m the modification to

satisfaction. First run the numerical test on the preliminary

nozzle profile to obtain temperature T(x). Incorporate this T(x)

into Equation (7.1) and (7.2), we can then solve for p/p0(x) and

the new nozzle profile A/A'(x) and proceed with the design steps

described above. Thus iteratively we can modify the design to our
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7.3 Some Examples Of Nozzle Geometry Design

With combinations of different total- temperature and expansion

rate, figure 7.1, 7.2 and 7.3 show the area ratio of a few sample

nozzles designed for steam. By comparing the figures, we can see

that for the same expansion rate, higher total temperature would

give flatter nozzle shape. The same is true for the same total

temperature with lower expansion rate. It is noted that the

result of these nozzles are used to show the effect of expansion

rate on some important variables in the previous chapter.

I

Using different total pressure, the mean radius at the exit of

each nozzle is calculated and summarized in table 7.1. Such a

table can serve as a design guideline and would be very useful to

generate the geometry of the nozzle that could give the desired

mean droplet radius. For example, if a mean radius of 0.16 _m is

wanted, by looking at the table we could immediately find that

for such nozzle, T falls between 500 K and 425 K, expansion rate
0

falls between 2500 i/sec and i0000 i/sec. Or one may use nozzle
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_:ZI2 and fine tune the inlet total pressure between 1.7 PiPeand

.87 MPato obtain the desired meanradius.

Although different nozzles may all be able to achieve the same

goal with proper inlet total pressure and/or proper length, not

all the implementations are feasible. _;o determining factors

are the degree cf slanting of the physical nozzle shape and the

exit pressure ratio cf the nozzle. Highly slanted nozzle would

have strong boundary layer effect, multidimensional effect and

flow separation problems. Flat sha_ed nczz!e presents less

boundary layer effect and less flow separation problem, however

creates more difficulties in precision and fabricating the

nozzle. High exit pressure ratio would re_aire either extremely

high inlet pressure or the extremely high exit vacuum which are

in general difficult to establish. %:ith such extremely high

pressure ratio, the strength of the nozzle material will a]so be

a limiting factor. Thus a compromise between all the limiting

factors has to be reached for a feasible design.



CHAPTER8 CONCLUSIONS

An analytical model to study spontaneous condensation of single

componentand two component (condensible vapor and noncondensible

gas mixture) was developed. Two nucleation theories one based

upon classical theory (Volmer and Frenkel), another Deich's

theory were used. The following conclusions result from this

study.

I. Computer codes to solve the models for both single component

flow and two component (one condensing vapor and one

noncondensing vapor) flow in a condensing nozzle were developed

and validated using available experimental results. The

comparison between experimental and numerical results was good.

The code provides the mean droplet size and number densJiy,

pressure ratio and quality as a function cf nozzle geometry and

nozzle inlet conditions.

2. The pressure ratio obtained from both classical theory and

Deich's theory compared favorably with the experimental data,

however, the results of Deich's theory have slightly smaller

standard deviation. In designing nozzles for obtaining relatively

78
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monodisperse droplets, Deich's theory should be used based o_ the

following reasons: (a) No acceptable correlation for surface

tension ratio can he established for classical theory; (b)

Classical theory tends to overestimate the mean droplet radius;

and (c) Deich's theory is expected to perform better on high

expansion rate nozzles than classical theory because it also

accounts for the nczzle expansion rate, which plays an important

role in the spontaneous condensation, in the nucleation process.

3. Surface tensicn ratio can be correlated with inlet tc[al

entropy for use with Deich's theory. A correlation for steam flow

was developed and used successfully.

4. Lower inlet total pressure and higher inlet total temperature

lead to a delay in pressure rise, smaller mean radius of the

droplets after spontaneous condensation, and smaller variat5o], 5n

droplet sizes.

5. Higher expansion rate will generate higher nucleation rate

and have steeper and earlier pressure rise. It also results in

smaller mean radius and better monodispersion.

6. The influence of all parameters on monodispersion is rather

small indicating that the spontaneous condensation process will
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always result in relatively monodispersedroplets.

7. The influence of noncondensing vapor was investigate<] ]_)_.i.i_

the two component flow model. Low initial condensing vapor

content results in a later and flatter pressure rise, smaller

meanradius, larger numberof droplets and better monodispersion.

It also results in higher Kn Numberso that the flow always falls

into the free molecular flow regime.

8. A nozzle design procedure is develcped to generate the nozzle

geometry based upon given inlet total conditions that will

produce droplets of the desired size. With constant expansion

rate, higher total temperature and lower expansion rate would

give flatter nozzle shape. Although different designs (nozzle

geometry and inlet total conditions) can all reach the same goal,

a state-of-art choice has to take into account of the bo[_n_ary

layer effect, multi-dimensional effect, precision of fabrJcal Jo_,,

strength of nozzle material etc. into consideration. Temperature

dependence and variable expansion rate design can be implemented

iteratively with the current proposed design procedure.



8.1 Recon<mendat ions

S1

To accurately solve the problem involving condensing flow,

further investigations on the following subjects are recommended:

A. surface tension of small liquid droplet or surface free

energy of small solid crystal with I0 to I00 molecules;

B. an accurate nucleation theory and experiments which can

accurately verify the calculated result of the theory;

C. the state of the condensate below sublimation or triple

line (solid cr liquid);

D. an accurate theory for rate of crystallization;

E. values of thermodynamic properties such as entha!py,

density, specific heat etc. at all range of temperature

and pressure.

It is also suggested that experiments of test nozzle be conducted

with nozzle design procedure described in the previous chapter to

confirm the numerical computation presented in this work.
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APPENDIXA

DERIVATION OF DEICH'S NUCLEATION THEORY

The nucleation rate consists of two components which we will

derive separately as follows.

I. First component J

This component is arised from the collision of z.any single

molecules which happen to form the droplet of critical size. The

number of molecules to make the critical size per unit mass and

per unit time I can be expressed as:
1

I! = - 4;_r2cr _ ( N _)cr@z (A. i)

where = nu/r_er of molecules bombarding at a unit surface per

unit time

N = the equilibrium number distribution of the droplet

z = f/N is a non-dimensional number distribution where f

is a non-equilibrium number distribution

n = number of molecules in each droplet
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The expression for _ is ",yell .... and can he found in any gas

kinetic theory book to he

where

P

- (A.2)

_ 2_mkT

1
m = mass of molecule = --

k = Boltzmann's constant = mR = R/N

= n_mber of molecules per unit mass of the condensing

vapor

The physical meaning cf Equation (A.!) may be interpreted as

follows: 4fir- _ represents the number of molecules reaching the
cr

surface of a droplet of critical size per unit time. N is the

number of droplets with critical size. The product of the two

would be the total number of molecules impinging cn all the

droplets with critical size. In other words, this proc]uct

represents the n,_--mber of molecules condensing on the nuclei of

critical radius per unit time. n is the number of molecules in
cr

az

a droplet with critical size. - ( _-_ )or represents the change of

the non-dimensional n'_--mber distribution from the droplet with

n - 1 molecules to the droplet with n molecules. Thus the
cr cr

product of these three terms gives the net molecule number flux

growing from n - ! molecules to n molecules, i.e. the
cr cr

nucleation rate.
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According to Wegener [I.18], equilibrium number distribution N

can be expressed as

N = N exp ( nkTA - 4_r2_kT ) (A.3)

where the Gibb's enthalpy change associated with the formation of

the droplet against the pressure difference (p - p ) to obtain

the drop initiall? at p at the actual vapor pressure p was

neglected, and the ideal gas assumption was used. If we use R and

instead of m and k in Equation (A.2) and (A.3), also noting

that the number of molecules n in a droplet with radius r can be

expressed as:

4 _r30f_n = T (A.4)

Equation (A.2) and (A.3) can then alternatively be expressed as:

_- PN (A.5)

4 3 --
_r p NRT A - 4r[Nr2m

N = N exp( RT ) (A.6)

g
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If we assumethat

i. The vapor has an equilibrium distribution before the

expansion,

2. The expansion is so rapid such that the number

distribution of the droplet does not have enough time to

adjust, thus remains at the initial equilibrium

distribution,

the non-equilibrium number distribution f would be the same as

the initial equilibrium distribution N :0

4 3 -
_r pfNRToA 0 4_Nr2_

f = N O = N exp( RT ) (A.7)
0

With Equation (A.6) and (A.7), the non-dimensional number

distribution z can now be expressed as:

Z ---- m

N
f 0

= -- = exp |
N N %

4 3 --
RToA0--_--Tzr pfN - 4tin r2q 0

RT
0

4 3 -- 2

RTA--_--_r pfN - 4_N r (7

RT ) (A.8)

_z

The derivative _ can now be derived by chain rule,
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Oz Oz 8r

8n Or an
(A.9)

From Equation (A.4), we have

O_n = 4_r2pf_Or
(A.10)

therefore,

ar i

an 4zr2pf_

(A.II)

Differentiate Equation (A.8) with respect to r gives

az RT A 4r_r2p N - 8r[Nr0" RTA4r_r2pfN - 8_Nr_

( oo o )= RT - RT
0

exp (

4 3 --
RToA0--_--r_r pfN - 4_Nr2_o

RT
0

4 3 --
RTA--_--r[r pfN - 4_Nr2_

RT ) (A.12)

Now, substitute Equation (A.5), (A.6), (A.9), (A.II) and (A.12)

into Equation (A.I) we get
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i _ pf o

RToA04_r" pfN - 8_Nrcr cr 0

A 9
RTA_r- p N - 8KNr

cr f cr

RT ) exp ( RT 0

4_Nr _
RToA0--_--_rcr pfN - ¢r 0

4 3 -- 4_r 2
RTA--_-_rcr pfN - cr

RT
) (A.13)

The number of nuclei with critical size generated per unit time

per unit mass of condensing vapor can be computed by:

where

I
1

J =
1 n

cr

(A.!4)

4 2 -

n = -- _rcr (A.15)cr 3 @fN

Substituting Equation (A.!3) and (A.15) into Equation (A.14) and

with r expressed as
cr

2o"
r = (A.16)

cr pf RTA

we can now obtain the final expression of the first component

nucleation rate as
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[ ] ]3_p RV_T T Ao_ /o" T A 3TAm /o _ - 2(TA)

_ g g o o o exp - o o
_ T TA

where

2
Z =
1

16_Nm 3

2 3

3pf (RT)g

(A.17)

2. Second component J
2

From chapter 2 we know that the droplets with mean radius smaller

than critical radius is unstable and will evaporated provided

that the vapor condition (e.g. temperature and pressure) remains

unchanged. However, during the expansion, the vapor condition

will change and so does the critical radius. We have shown that

the critical radius is decreasing during the nucleation zone.

Thus some of the droplets with subcritica! size formed upstream

would not have enough time to evaporate when they are transported

to a downstream region, where they become supercritical.

Consequently, these droplets would then become stable and serve

as the nuclei for further condensation. This constitutes the

second component of Deich's nucleation theory, which is not taken

into account in the classical and Lothe-Pound nucleation

theories.
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It is obvious than the higher the expansion rate is, the faster

will the rate of decrease of the critical radius be. And the

faster the rate of decrease of the critical radius, the larger

the number of droplets would become supercritical from

subcritical. Also changing of critical radius r is the same as
cr

changing the number of molecules in a critical droplet n
cr"

Therefore, if the same two assumptions used in deriving the first

component nucleation rate are made as well, the number of

molecules that would make critical size droplet per unit time per

unit mass of the condensing vapor I can be computed as:
2

dn

cr
I = - N
2 0 dt

(A.18)

Using chain rule I can be further expressed as:
2

dn dr
cr cr dAT

I = - N (A.19)
2 0 dr dAT dt

cr

Differentiate Equation (A.15) we get

dn
c_

dr = 4_r2cr Pf _
cr

(A.20)
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In addition to Equation (A.16), r
cr

[1.06]:

can also be expressed as

20-

r : (A.21)
cr T

g

With AT = T - T , r would look like
S g cr

2_
r = (A.22)
_:r AT

p fhfg In( 1 + _----)
g

By differentiating Equation (A.22) with respect to AT we would

have

dr r
cr cr

dAT T

Tg In( s)_--
g

(A.23)

Substitute Equation (A.7), (A.20) and (A.23) into Equation (A.19)

and utilize the expression of r with Equation (A.16) will give
cr

4_r3c rPf _2 dAT 4 4;[Nr2 _

( 3crPf_A cr 0 )I2 = T d--t'-exp _ _r 0 RT (A.24)
s

Tgln( _-- ) 0
g
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Similar to Equation (A.14), J can be expressed as2

12J =2 n
cr

(A.25)

By substituting Equation (A.16) into Equation (A.15) and (A.24),

the second component of Deich's nucleation theory J can be

computed as:

l 0 (A.26)

The total nucleation rate J is the sum of the two components

J = J + J (A.27)
1 2



APPENDIXB

RELATION BETWEEN SUPERCOOLING KATE dAT/dt AND EXPANSION RATE p

As shown in Appendix A, the second component of the Deich's

nucleation rate depends on the supercooling rate d_T/dt, which

can be shown to be related to the expansion rate as follows.

By definition AT = T - T , thus

dT dT

dAT_ = _s _ _ (B.I)
dt dt dt

Assume isentropic expansion, we have

p = T _ • constant (B.2)

dT
i dp -_" i q

(B.3)
: p dt : }- i T dt

q

thus

'dT
q _" - I •

--= - T --p
dt g 7

(B.4)
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Also from Clausius-Clapeyron equation we have

h
dp fg

dT v T
s sg s

(B.5)

where v is the specific volume of saturated vapor at pressure
s_

p. With Equation (B.3), this gives

dT v T
s s_ s dp

dt h dt
f_

pv T
• S g S

- -P- h
fg

(B.6)

Hence, substituting Equation (B.4) and (B.6) back into Equation

[B.I) we have

dAT _" I pVsgT

d-E- = T (B.7)g _ h
fq

which shows that the supercooling rate dAT/dt is directly

proportional to the expansion rate p.



APPENDIX C

DERIVATIVE OF TOTAL WETNESS

To solve the e_aaticn of velocity, the expressicn of the

derivative of total wetness dw/dx is required. Two ways we can

derive this equation, mathematically or physically. Both methods

give exactly the same expression.

I. Mathematically

dw/x can be obtained by directly differentiating w EquatiGn (4.26)

= w (x ; x) dx (C.I)

(x) _ :0 i _ i
1

Assume

w (x ; x) ag (x
i i : _ i; x)

i

(C.2)

Substitute Equation (C.2) into (C.I), we have
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i C 0

__dw : dx--d]_"dx(X) w (x.; x) dxi z i
x =0
i

d ] 8g
: :- --(x ; x) dx

ax 8x i i
x :0 i
i

d[ ]: _xx g(x;x) - g(O;x)

[< ] ,o,o,o,,]dx 8g(x;x ) dx - r8g (0;x) + ;x)

_ 1

8g 8g
_ _ (x;x) + (x;x) (O.x)
OX OX

i

= w (x;x) + °_g(x;x> - _x(0;x)
i OX

(C.3)

Also from Equation (C.2) we know that

_.__ _[_ ]_ [_,x]=--(x;oxz x) = =-ax (x;._x) = _-_i ; x)
1

(C.4)

Thus

X :0

i

awi _ a lag(× x)] dxa--_-(x ; x) ax._. : .:o a-_-i [a--_ i; i
1
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ag ag (
= _-:2(x;x) - _-_O;x) (c.5)

From Equation (C.5) and (C.3), we have

I l=d]xo_-- w (X ; x) dx
i i i

X =0
i

"_,i awi (×i: w (x;x) ÷ _- ; x) dx
i . :0 i

l

(C.6

Differentiate Equation (4.24) with respect to x and utilize

Equation (4.2), we have

dw 1 4 3

d-_ (x) = c(x) 3 _rc_X) Pf J(x)

47[ x) J(x ) [Tf (x ; x) - T (x)]dxi ,i i g i

v 9

Illrc(x) =0 [h (T (x)) h (Tf (x.; x))] c(x.)• g g f ,i l
l

(5.3)

2. Physically

The increase of the total wetness can be attributed to two parts:
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(i) the birth of a new group of droplet, and (2) the growth of all

the groups of the old droplets. The mass of the new born droplets

per unit mass of the mixture is

4 3

(dw) new = pf _rcr(X) J(x) dt (C.7)

The increase of mass of the group born at x
i

x will be

currently located at

(dw) = p 4_ri(x ; x) dr J(x ) dt (C.8)old i i ! i

The increase of total wetness can then be calculated by

X

dw = (dw) new + _ (dw) old (C. 9 )
x =0
i

Note that

dx
dt = (C.10)

c(x)

Thus we have

x dr J(x )

dw 4 B J(x) _ 2i i i dx_x(X) : pf _TKr (X) + Of4;_r (xi; x) dx _(x ) i
cr c(x) × :o l

i
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(C.II)

Also from Equation (4.2) we have

dr

pf4Trr (x i, x) _--(x._; x)

4rrr2(x.. , x) _. (x.-, x)IT. (x -., x) -T (x)]
z l l [,i i g

[h (T (x) hf(Tf (x ; x) )] c(x)g g ,i i

(C.12)

Hence, substitute Equatzon (C.12) into (C.ll) we obtain

dw 1 4 3

d-_x(x) = c(x) 3 _rcr(X) pf J(x)

i r2(x ;

47I i i

c(x) .=_
1

x) _ (x ; x} J(x ) IT (x ; x) -T (x)]dx
i i i f,i i g i

[h (T (x)) -h (T (x.; x))] c(x )
g g f f,i " i

(5.3)



APPENDIX D

DERIVATION OF EQUATION OF VELOCITY

The equation of velocity can be derived from the differential

form of continuity equation, momentum equation, energy equation,

and the equation of state. These equations are listed as follows.

continuity equation

dp dc dA dw = 0 (D.l)-- + + +

p _- i- i -w

momentum equation

i - W

cdc + -- dp = 0 (D.2)
P

energy equation

n

cdc + (I - w')c dT + wc dT = h dw
P g f f fg

(D.3)

equation of state

p = pRT
g

(D.4)

First, differentiate equation of state Equation (D.4) gives

104
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dT = ! (!dp - d__pRT 1
g R p p g

(D.5)

Use Equation (D.2) for

Equation (D.5) we get

1
= dp , and Equation (D.I) for -__C in
P P

dT 1 [-cdc dc dA dw ]= -- + -- + )RTg
(D._$)

Substitute Equation (D.6) into Equation (D.3) gives

cdc + (I - w)c
p_L1-w + ¢C Oil dl_--_Ww)RTg]

-- + -- + + wc dT : h dw
c A f f fg

(D.7)

Group all the terms with dc together and divide

equation with (I - w) c T we have
p q

the whole

t

ds (I - cp/E} dA dw wcfdTf - hfg

c (I - bi_ T - 1 _- + 1 - w (I - w)c T
D g D g

(D.8)

Note that for ideal gas R = c - c
p v

, thus Equation (D.8} will be

J

dc c dA dw [ f fg

C (I - w)_RT A-" 1 - w (I - w)c T
g p g

(D.9)
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From the definition of Machnumber

2
M2 = c

_RT
(D.10)

we can nowobtain the equation of velocity

dc c dA I f f p, _ g f, __

d--x: [ M 2 ] d-x i + (l-w)c T dx + [yi_ T dx

I J P,gg . jtl-w

(5.2)

Utilizing the differential form of the two component continuity

equation, momentum equation, energy equation, and the equation of

state, with exactly the same procedure, we can also yield the

equation of velocity for two component model. The arithmetic for

such derivation is straight forward and lengthy, thus will si_t: }Jo

presented here.



APPENDIX E

DERIVATION OF MEAN MOLECULAR WEIGHT AND DENSITY

I. Mean Molecular Weight

The initial mass fraction of the condensing vapor w
)

as

is defined

whe re

m m
vO ".'_

w = -- = (E.I)
: m m + m

",'0 .%

m = initial mass of condensing vapor
V 0

m = mass of noncondensing inert gas
n

m = total mass of the mixture

wetness w, the mass fraction of the condensate, can be evaluated

as

m m - m
c v0 v

w = -- = (E,2)
m m

where

m = mass of condensate
C

m = remaining mass of condensing vapor after
V

ccndensation

107
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Since the number of moles of the mixture vapor is the sum of the

moles of the condensing vapor and inert gas, the mean molecular

weight for the vapor phase defined as the mass per mole of the

mixture vapor can then be related to the molecular weight of the

condensing vapor M and inert gas M by
V n

m + m m m
V n v .q

M M M
g V n

Frcm Equation (E.I) we have

m

n
-- = 1 - w
m 0

(E.4)

From Equation (E.I) and (E.2) we have

m

v

m _- w

m 0
- w (E.5)

M can then be calculated from Equation (E.3) as
g

M --

g

m + m w - w + I - w
v n 0 0

1 1m m
%

v n -w;__ + __ (w° _-- + (I - w0) _-
M M v n

V n
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1 - w a,
(E <9]

1 1

(w ° - w) _'%-+ (i - wo) M--
V n

2. Vapor Density

Assume both condensing vapor and noncondensing inert gas are

ideal gases and of the same temperature. From Dalton's rule

[A.01]

R R R

p : pv + D : p _- T + On T = p -- T
v rl g

(E.7

Thus we obtain

Pg Pv pn
-- + --

M M M
g v n

where M is expressed as Equation (E.6).
g

(E.8



APPENDIX F

INPUT OF THE FORTRAN PROGRAM

I. Thermodynamic Properties

(T) as a function ofPSAT(T) : saturated pressure P
sat

temperature T

TSAT(P) : saturated temperature T (P) as a function of
sa5

pressure P

HG(T) : vapor enthalpy h (T) as a function of temperature T
g

TVAP(HG) : vapor temperature T (h) as a function cf vapor
g

enthalpy HG

CP(T) : constant pressure specific heat of vapor c (T) as a

function of temperature T, in some cases c remains
P

constant in the temperature range of interest

GMISEN : ratio of specific heat of vapor c / c , in some
p v

cases it remains constant in the temperature range of

interest

HF(T) : liquid enthalpy hf(T) as a function of temperature T

SF(T) : liquid entropy sf(Tf) as a function of temperature T

DF(T,P) : liquid density pf(T°P) as a function of temperature

T and pressure P, in some cases pf remains constant

ii0
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in the temperature and pressure range of interest

CF(T) : specific heat cf liquid c (T) as a functicn of

temperature T, in some cases c remains ccnstant in
f

the temperature range of interest

SIGM-A0(T) : suface tension of flat surface _ (T) expressed in
0

the form of fitting polynomial NTERMS, SB(I),

SC(I), SD(I)

[{_ : molecular weight M of the expanding vapor

2. Nczzle Geometry

MR(x) or PR(x) : area ratio or isentropic pressure ratio as a

function of streamwise distance of nozzle

expressed in the form of coefficients of

fitting polyncmials NTE_iA, AB(I), AC(I),

AD(I) or NTE_,IP, PB(I), PC(I), PD(I)

N : No. of grids

DIST : overall distance

X0 : starting location of the nozzle to the throat

3. Constants



R : universal gas constants

NA : Avagadra Number

PI :

112

4. Initial Conditicns

TO : inlet total temperature T
0

PO : inlet total pressure P

H0V : inlet total enthalpy h
8

S0V : inlet total entropy s
0

5. Iteration Parameters

NITER : maximum times of iteration

EPSM, EPS : convergence criteria of the relative deviation

of the iteration of Mach No., and other variables

such as velocity VEL, vapor temperature TVAP,

pressure P, droplet radius RI

RELAX, RELAX2 : relaxation factor of the intermediate

iteration result before and after the end of

nucleation



113

6. Experimental Data

NEXP : No. of experimental data

PREXP : experimental pressure ratio

UNITS USED IN THE PROGRAM

?

i. Pressure : N/m-

2 Temperature : K

3 Density : Kg/m _

4 Velocity : m/s

5 Length : m

6 Enthalpy : J/Kg

7 Entrcpy: J/(Kg K)

8 Specific Heat : J/(Kg K)

9 Universal Gas Constant : J/(Kg mol K)

!0. Molecular Weight : Kg/(Kg mol)

ii. Surface Tension : N/m

12. Thermal Conductivity : J/(s m K)



APPENDIX G

DEFINITION OF THE CORRELATION COEFFICIENT

The correlation coefficient can he defined as follcws. Given n

pairs of observations (x ,y , the correlation coefficient r can
1 1

be shown to be [G.01]:

nZxy - 12x){Zy)
i i "

r = (G.I)

/n Z x2 - (g× )2
i i

/n g y! - <g y.)
. 1

r serves as a measure of the degree of linear relationship among

variables. The value of r is between 1 and -i. The larger the Irl

is, the stronger the linear correlation is.
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Table 6.1 Sum.mar'J_ cf one co:,,:- ........ _.-_'..- test case result

C: classical theory, D: [_eicb.'s thecry

error (Pa): standard deviaticn cf pressure ccmpariscn between

theory and e:.weriment

STD (!0 -_m): standard deviation of droplet radius distribution

Test Case

Barschdorff

No. 4

Barschdorff

No. 7

Barschdorff

No. i0

388.4

P (Pa)

78323

78323

P ( Pa ) errcr

33246 .0112

33447 .0124

27367 .0172

27650 .0179

Binnie and

Wood No. 92

Binnie and

Wood No. 93

Deich

D

C

D

C

D

C

.840

i 000

.865

1.040

Gyarmathy and D

Meyer No. 102 C

Gyarmathy and

Meyer No. 108

399.8 78323 21941 .0023

22086 .0021

146030

411"9

4:0.6

.835_

.985

.8751420060

60

}}972

296840

47309 .0086

__ _ .0084

27531 .0116

27898 .0121

72633 .0062

72892 .0053

Gyarmathy and

Meyer No. 107

Gyarmathy and

Meyer No. 112

Gyarmathy and

Meyer No. 119

Gyarmathy and

4eyer No. 91

Kadambi No. 3

Kadambi No. 4

Kadambi No. 5

Moore No. A

D .830

C 995

D .805

C 965

D .770

C 9O5

D .960

C .!50

D .88O

C .990

D .780

C .995

D .750

C .955

D .785

C .985

392.3

389.8

88.7

42.1

i367.1

62052 18346

18511

62052 18148

18394

37921 9281

9398

4}2280 187080

190690

.0027

.0028

.0073

.0070

.0056

.0062

.0077

.0079

2}2010 _ac,-_ .0044

47330 .0046

"_C [ •

_._08 13664 0283

13742 .0290

3_920 i 14550 .029814327 .0291

 2882i212951.04952!5i .050o

92971.o228
9316J .0231

115

.30

.70

.0057 .42

.0068 .96

.0030 1.32

.0035 1.15

0636 7.07

074____07.36

0128 2.62

0130 3.29

0066 1.96

0072 2.42

0060 2.20

0068_2.82

0086 3.36

0091___

007913.41

.0094_2.57
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TABLE7. i meanradius calculated at nozzle exit

to

STD (i0 _m):

nozzle T (K)0

18 cmdownstream

the nozzle Chcat for nozzles of various design

standard deviation of droplet radius distribution

p(i/sec)

NZII 500 2500

NZII 500 2500

NZI2 500 5000

NZI2 500 5000

P (MPa)
0

r (_m)
m

STD

1.7 0.2795 5.96

0.87 0.0715 12.3

1.7 0.2117 4.35

0.87 0.0896 6.23

NZI3 500 i0000 1.7 0.1304 4._
l

NZI3 500 i0000 0.87 0.0534 5.5'3

NZ21 425 2500 0.33 0.1339 9.71

NZ21 425 2500 0.17 0.0407 5.73

NZ22 425 5000 0.33 0.0869 7.13

NZ22 425 5000

NZ23 425 i0000

0.17

0.33

0.0250 3.$6

0.0451 5.93

0.0152 2.57

0.0111 2.54

0.0037 1.22

NZ23 425 i0000 0.17

NZ31 350 2500 0.027

NZ31 350 2500 0.013

NZ32 350 5000 0.027 0.0073 1.92

NZ32 350 5000 0.013 0.0032 .851

NZ33 350 i0000 0.027 0.0057 1.00

0.0026 ._o
I NZ33

350 10000 0.013
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